Vigilance. In modern psychology, vigilance, also termed sustained concentration, is defined as the ability to maintain concentrated attention over prolonged periods of time. During this time, the person attempts to detect the appearance of a particular target stimulus. The individual watches for a signal stimulus that may occur at an unknown time. The study of vigilance has expanded since the 1940s mainly due to the increased interaction of people with machines for applications involving monitoring and detection of rare events and weak signals. Such applications include air traffic control, inspection and quality control, automated navigation, military and border surveillance, and lifeguarding. The systematic study of vigilance was initiated by Norman Mackworth during World War II. Mackworth authored The breakdown of vigilance during prolonged visual search in 1948 and this paper is the seminal publication on vigilance. Mackworth's 1948 study investigated the tendency of radar and sonar operators to miss rare irregular event detections near the end of their watch. Mackworth simulated rare irregular events on a radar display by having the test participants watch an unmarked clock face over a 2-hour period. A single clock hand moved in small equal increments around the clock face, with the exception of occasional larger jumps. This device became known as the Mackworth Clock. Participants were tasked to report when they detected the larger jumps. Mackworth's results indicated a decline in signal detection over time, known as a vigilance decrement. The participants' event detection declined between 10 and 15 percent in the first 30 minutes and then continued to decline more gradually for the remaining 90 minutes. Mackworth's method became known as the Clock Test and this method has been employed in subsequent investigations. Vigilance decrement is defined as deterioration in the ability to remain vigilant for critical signals with time, as indicated by a decline in the rate of the correct detection of signals. Vigilance decrement is most commonly associated with monitoring to detect a weak target signal. Detection performance loss is less likely to occur in cases where the target signal exhibits a high saliency. For example, a radar operator would be unlikely to miss a rare target at the end of a watch if it were a large bright flashing signal, but might miss a small dim signal. Under most conditions, vigilance decrement becomes significant within the first 15 minutes of attention, but a decline in detection performance can occur more quickly if the task demand conditions are high. This occurs in both experienced and novice task performers. Vigilance had traditionally been associated with low cognitive demand and vigilance decrement with a decline in arousal pursuant to the low cognitive demand, but later studies indicated that vigilance is hard work, requiring the allocation of significant cognitive resources, and inducing significant levels of stress. Green and Swets formulated the Signal Detection Theory, or SDT, in 1966 to characterize detection task performance sensitivity while accounting for both the observer's perceptual ability and willingness to respond. SDT assumes an active observer making perceptual judgments as conditions of uncertainty vary. A decision maker can vary their response bias, characterized by c, to allow more or less correct detections, but at the respective cost of more or less false alarms. This is termed a criterion shift. The degree to which the observer tolerates false alarms to achieve a higher rate of detection is termed the bias. Bias represents a strategy to minimize the consequences of missed targets and false alarms. As an example, the lookout during a bank robbery must set a threshold for how cop-like an approaching individual or vehicle may be. Failing to detect the cop in a timely fashion may result in jail time, but a false alarm will result in a lost opportunity to steal money. In order to produce a bias-free measure, d' is calculated by measuring the distance between the means of the signal and non-signals and scaling by the standard deviation of the noise. Mathematically, this can be accomplished by subtracting the z-score of the hit rate from the z-score of the false alarm rate. Application of SDT to the study of vigilance indicates that in most, but not all cases, vigilance decrement is not the result of a reduction in sensitivity over time. In most cases a reduction of detections is accompanied by a commensurate reduction in false alarms, such that d' is relatively unchanged. Mental workload, or cognitive load, based on task differences can significantly affect the degree of vigilance decrement.